Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.844
Filtrar
1.
Curr Protoc ; 4(3): e1014, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38506436

RESUMO

This article presents a practical guide to mass spectrometry-based data-independent acquisition and label-free quantification for proteomics analysis applied to cerebrospinal fluid, offering a robust and scalable approach to probing the proteomic composition of the central nervous system. © 2024 Wiley Periodicals LLC. Basic Protocol 1: Cerebrospinal fluid sample collection and preparation for mass spectrometry analysis Basic Protocol 2: Mass spectrometry sample analysis with data-independent acquisition Support Protocol: Data-dependent mass spectrometry and spectral library construction Basic Protocol 3: Analysis of mass spectrometry data.


Assuntos
Proteoma , Proteômica , Humanos , Proteômica/métodos , Proteoma/análise , Espectrometria de Massas/métodos , Proteínas do Líquido Cefalorraquidiano/química
2.
Clin Chim Acta ; 556: 117848, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38417781

RESUMO

Proteomic profiling is an effective way to identify biomarkers for Parkinson's disease (PD). Cerebrospinal fluid (CSF) has direct connectivity with the brain and could be a source of finding biomarkers and their clinical implications. Comparative proteomic profiling has shown that a group of differentially displayed proteins exist. The studies performed using conventional and classical tools also supported the occurrence of these proteins. Many studies have highlighted the potential of CSF proteomic profiling for biomarker identification and their clinical applications. Some of these proteins are useful for disease diagnosis and prediction. Proteomic profiling of CSF also has immense potential to distinguish PD from similar neurodegenerative disorders. A few protein biomarkers help in fundamental knowledge generation and clinical interpretation. However, the specific biomarker of PD is not yet known. The use of proteomic approaches in clinical settings is also rare. A large-scale, multi-centric, multi-population and multi-continental study using multiple proteomic tools is warranted. Such a study can provide valuable, comprehensive and reliable information for a better understanding of PD and the development of specific biomarkers. The current article sheds light on the role of CSF proteomic profiling in identifying biomarkers of PD and their clinical implications. The article also explains the achievements, obstacles and hopes for future directions of this approach.


Assuntos
Doenças Neurodegenerativas , Doença de Parkinson , Humanos , Doença de Parkinson/diagnóstico , Doença de Parkinson/líquido cefalorraquidiano , Proteínas do Líquido Cefalorraquidiano , Proteômica , Biomarcadores/líquido cefalorraquidiano
3.
Int J Mol Sci ; 25(1)2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38203854

RESUMO

Mutations in the GBA1 gene increase the risk of developing Parkinson's disease (PD). However, most carriers of GBA1 mutations do not develop PD throughout their lives. The mechanisms of how GBA1 mutations contribute to PD pathogenesis remain unclear. Cerebrospinal fluid (CSF) is used for detecting pathological conditions of diseases, providing insights into the molecular mechanisms underlying neurodegenerative disorders. In this study, we utilized the proximity extension assay to examine the levels of metabolism-linked protein in the CSF from 17 PD patients carrying GBA1 mutations (GBA1-PD) and 17 idiopathic PD (iPD). The analysis of CSF secretome in GBA1-PD identified 11 significantly altered proteins, namely FKBP4, THOP1, GLRX, TXNDC5, GAL, SEMA3F, CRKL, APLP1, LRP11, CD164, and NPTXR. To investigate GBA1-associated CSF changes attributed to specific neuronal subtypes responsible for PD, we analyzed the cell culture supernatant from GBA1-PD-induced pluripotent stem cell (iPSC)-derived midbrain dopaminergic (mDA) neurons. The secretome analysis of GBA1-PD iPSC-derived mDA neurons revealed that five differently regulated proteins overlapped with those identified in the CSF analysis: FKBP4, THOP1, GLRX, GAL, and CRKL. Reduced intracellular level of the top hit, FKPB4, was confirmed via Western Blot. In conclusion, our findings identify significantly altered CSF GBA1-PD-associated proteins with FKPB4 being firmly attributed to mDA neurons.


Assuntos
Células-Tronco Pluripotentes Induzidas , Doença de Parkinson , Proteínas de Ligação a Tacrolimo , Humanos , Proteínas do Líquido Cefalorraquidiano , Proteínas de Membrana , Mutação , Proteínas do Tecido Nervoso , Doença de Parkinson/genética , Isomerases de Dissulfetos de Proteínas , Secretoma , Proteínas de Ligação a Tacrolimo/genética
4.
Proteomics Clin Appl ; 18(1): e2300021, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37551060

RESUMO

PURPOSE: The pathogenesis of idiopathic intracranial hypertension (IIH) is currently poorly understood. This exploratory study aimed to identify potential cerebrospinal fluid (CSF) biomarkers in IIH cases compared to controls using SWATH-MS proteomics approach. EXPERIMENTAL DESIGN: CSF samples were collected prospectively from IIH cases and control subjects which were subjected to SWATH-MS based untargeted proteomics. Proteins with fold change > 1.5 or < 0.67 and p-value < 0.05 were considered significantly differentially expressed. Data are available via ProteomeXchange with identifier PXD027751. Statistical analysis was conducted in R version 3.6.2. RESULTS: We included CSF samples from 33 subjects, consisting of 13 IIH cases and 20 controls. A total of 262 proteins were identified in Proteinpilot search. Through SWATH analysis, we quantified 232 proteins. We observed 37 differentially expressed proteins between the two groups with 24 upregulated and 13 downregulated proteins. There were two differential proteins among overweight versus non-overweight IIH cases. Network for 23 proteins was highly connected in the interaction analysis. CONCLUSIONS AND CLINICAL RELEVANCE: Neurosecretory, neuroendocrine, and inflammatory proteins were predominantly involved in causing IIH. This exploratory study served as a platform to identify 37 differentially expressed proteins in IIH and also showed significant differences between overweight and non-overweight IIH patients.


Assuntos
Pseudotumor Cerebral , Humanos , Pseudotumor Cerebral/líquido cefalorraquidiano , Proteínas do Líquido Cefalorraquidiano , Sobrepeso , Proteômica , Biomarcadores/líquido cefalorraquidiano
5.
J Alzheimers Dis ; 97(2): 621-633, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38143358

RESUMO

BACKGROUND: Although cerebrospinal fluid (CSF) amyloid-ß42 peptide (Aß42) and phosphorylated tau (p-tau) and blood p-tau are valuable for differential diagnosis of Alzheimer's disease (AD) from cognitively normal (CN) there is a lack of validated biomarkers for mild cognitive impairment (MCI). OBJECTIVE: This study sought to determine how plasma and CSF protein markers compared in the characterization of MCI and AD status. METHODS: This cohort study included Alzheimer's Disease Neuroimaging Initiative (ADNI) participants who had baseline levels of 75 proteins measured commonly in plasma and CSF (257 total, 46 CN, 143 MCI, and 68 AD). Logistic regression, least absolute shrinkage and selection operator (LASSO) and Random Forest (RF) methods were used to identify the protein candidates for the disease classification. RESULTS: We observed that six plasma proteins panel (APOE, AMBP, C3, IL16, IGFBP2, APOD) outperformed the seven CSF proteins panel (VEGFA, HGF, PRL, FABP3, FGF4, CD40, RETN) as well as AD markers (CSF p-tau and Aß42) to distinguish the MCI from AD [area under the curve (AUC) = 0.75 (plasma proteins), AUC = 0.60 (CSF proteins) and AUC = 0.56 (CSF p-tau and Aß42)]. Also, these six plasma proteins performed better than the CSF proteins and were in line with CSF p-tau and Aß42 in differentiating CN versus MCI subjects [AUC = 0.89 (plasma proteins), AUC = 0.85 (CSF proteins) and AUC = 0.89 (CSF p-tau and Aß42)]. These results were adjusted for age, sex, education, and APOEϵ4 genotype. CONCLUSIONS: This study suggests that the combination of 6 plasma proteins can serve as an effective marker for differentiating MCI from AD and CN.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Humanos , Doença de Alzheimer/diagnóstico , Doença de Alzheimer/líquido cefalorraquidiano , Proteínas do Líquido Cefalorraquidiano , Peptídeos beta-Amiloides/líquido cefalorraquidiano , Estudos de Coortes , Proteínas tau/líquido cefalorraquidiano , Disfunção Cognitiva/diagnóstico , Disfunção Cognitiva/líquido cefalorraquidiano , Biomarcadores/líquido cefalorraquidiano , Proteínas Sanguíneas , Fragmentos de Peptídeos/líquido cefalorraquidiano
7.
Sci Transl Med ; 15(712): eadg4122, 2023 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-37672565

RESUMO

Alzheimer's disease (AD) is a neurodegenerative disease with heterogenous pathophysiological changes that develop years before the onset of clinical symptoms. These preclinical changes have generated considerable interest in identifying markers for the pathophysiological mechanisms linked to AD and AD-related disorders (ADRD). On the basis of our prior work integrating cerebrospinal fluid (CSF) and brain proteome networks, we developed a reliable and high-throughput mass spectrometry-selected reaction monitoring assay that targets 48 key proteins altered in CSF. To test the diagnostic utility of these proteins and compare them with existing AD biomarkers, CSF collected at baseline visits was assayed from 706 participants recruited from the Alzheimer's Disease Neuroimaging Initiative. We found that the targeted CSF panel of 48 proteins (CSF 48 panel) performed at least as well as existing AD CSF biomarkers (Aß42, tTau, and pTau181) for predicting clinical diagnosis, FDG PET, hippocampal volume, and measures of cognitive and dementia severity. In addition, for each of those outcomes, the CSF 48 panel plus the existing AD CSF biomarkers significantly improved diagnostic performance. Furthermore, the CSF 48 panel plus existing AD CSF biomarkers significantly improved predictions for changes in FDG PET, hippocampal volume, and measures of cognitive decline and dementia severity compared with either measure alone. A potential reason for these improvements is that the CSF 48 panel reflects a range of altered biology observed in AD/ADRD. In conclusion, we show that the CSF 48 panel complements existing AD CSF biomarkers to improve diagnosis and predict future cognitive decline and dementia severity.


Assuntos
Doença de Alzheimer , Proteínas do Líquido Cefalorraquidiano , Doença de Alzheimer/líquido cefalorraquidiano , Doença de Alzheimer/diagnóstico , Humanos , Prognóstico , Biomarcadores/líquido cefalorraquidiano , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Idoso de 80 Anos ou mais , Determinação de Ponto Final , Ensaios de Triagem em Larga Escala , Proteínas do Líquido Cefalorraquidiano/análise , Tomografia por Emissão de Pósitrons , Hipocampo/diagnóstico por imagem , Hipocampo/patologia , Tamanho do Órgão
8.
Biomolecules ; 13(9)2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37759795

RESUMO

Delirium is a common postoperative complication among older patients with many adverse outcomes. Due to a lack of validated biomarkers, prediction and monitoring of delirium by biological testing is not currently feasible. Circulating proteins in cerebrospinal fluid (CSF) may reflect biological processes causing delirium. Our goal was to discover and investigate candidate protein biomarkers in preoperative CSF that were associated with the development of postoperative delirium in older surgical patients. We employed a nested case-control study design coupled with high multiplex affinity proteomics analysis to measure 1305 proteins in preoperative CSF. Twenty-four matched delirium cases and non-delirium controls were selected from the Healthier Postoperative Recovery (HiPOR) cohort, and the associations between preoperative protein levels and postoperative delirium were assessed using t-test statistics with further analysis by systems biology to elucidate delirium pathophysiology. Proteomics analysis identified 32 proteins in preoperative CSF that significantly associate with delirium (t-test p < 0.05). Due to the limited sample size, these proteins did not remain significant by multiple hypothesis testing using the Benjamini-Hochberg correction and q-value method. Three algorithms were applied to separate delirium cases from non-delirium controls. Hierarchical clustering classified 40/48 case-control samples correctly, and principal components analysis separated 43/48. The receiver operating characteristic curve yielded an area under the curve [95% confidence interval] of 0.91 [0.80-0.97]. Systems biology analysis identified several key pathways associated with risk of delirium: inflammation, immune cell migration, apoptosis, angiogenesis, synaptic depression and neuronal cell death. Proteomics analysis of preoperative CSF identified 32 proteins that might discriminate individuals who subsequently develop postoperative delirium from matched control samples. These proteins are potential candidate biomarkers for delirium and may play a role in its pathophysiology.


Assuntos
Delírio do Despertar , Humanos , Idoso , Proteínas do Líquido Cefalorraquidiano , Estudos de Casos e Controles , Proteômica , Complicações Pós-Operatórias , Oligonucleotídeos
9.
J Proteome Res ; 22(9): 3068-3080, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37606934

RESUMO

Cerebrospinal fluid (CSF) is an essential matrix for the discovery of neurological disease biomarkers. However, the high dynamic range of protein concentrations in CSF hinders the detection of the least abundant protein biomarkers by untargeted mass spectrometry. It is thus beneficial to gain a deeper understanding of the secretion processes within the brain. Here, we aim to explore if and how the secretion of brain proteins to the CSF can be predicted. By combining a curated CSF proteome and the brain elevated proteome of the Human Protein Atlas, brain proteins were classified as CSF or non-CSF secreted. A machine learning model was trained on a range of sequence-based features to differentiate between CSF and non-CSF groups and effectively predict the brain origin of proteins. The classification model achieves an area under the curve of 0.89 if using high confidence CSF proteins. The most important prediction features include the subcellular localization, signal peptides, and transmembrane regions. The classifier generalized well to the larger brain detected proteome and is able to correctly predict novel CSF proteins identified by affinity proteomics. In addition to elucidating the underlying mechanisms of protein secretion, the trained classification model can support biomarker candidate selection.


Assuntos
Pesquisa Biomédica , Proteoma , Humanos , Encéfalo , Transporte Proteico , Transporte Biológico , Proteínas do Líquido Cefalorraquidiano
10.
Alzheimers Res Ther ; 15(1): 124, 2023 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-37454217

RESUMO

BACKGROUND: Alzheimer's disease (AD) cerebrospinal fluid (CSF) core biomarkers (Aß42/40 ratio, p-tau, and t-tau) provide high diagnostic accuracy, even at the earliest stage of disease. However, these markers do not fully reflect the complex AD pathophysiology. Recent large scale CSF proteomic studies revealed several new AD candidate biomarkers related to metabolic pathways. In this study we measured the CSF levels of four metabolism-related proteins not directly linked to amyloid- and tau-pathways (i.e., pyruvate kinase, PKM; aldolase, ALDO; ubiquitin C-terminal hydrolase L1, UCHL1, and fatty acid-binding protein 3, FABP3) across the AD continuum. We aimed at validating the potential value of these proteins as new CSF biomarkers for AD and their possible involvement in AD pathogenesis, with specific interest on the preclinical phase of the disease. METHODS: CSF PKM and ALDO activities were measured with specific enzyme assays while UCHL1 and FABP3 levels were measured with immunoassays in a cohort of patients composed as follows: preclinical AD (pre-AD, n = 19, cognitively unimpaired), mild cognitive impairment due to AD (MCI-AD, n = 50), dementia due to AD (ADdem, n = 45), and patients with frontotemporal dementia (FTD, n = 37). Individuals with MCI not due to AD (MCI, n = 30) and subjective cognitive decline (SCD, n = 52) with negative CSF AD-profile, were enrolled as control groups. RESULTS: CSF UCHL1 and FABP3 levels, and PKM activity were significantly increased in AD patients, already at the pre-clinical stage. CSF PKM activity was also increased in FTD patients compared with control groups, being similar between AD and FTD patients. No difference was found in ALDO activity among the groups. UCHL1 showed good performance in discriminating early AD patients (pre-AD and MCI-AD) from controls (AUC ~ 0.83), as assessed by ROC analysis. Similar results were obtained for FABP3. Conversely, PKM provided the best performance when comparing FTD vs. MCI (AUC = 0.80). Combination of PKM, FABP3, and UCHL1 improved the diagnostic accuracy for the detection of patients within the AD continuum when compared with single biomarkers. CONCLUSIONS: Our study confirmed the potential role of UCHL1 and FABP3 as neurodegenerative biomarkers for AD. Furthermore, our results validated the increase of PKM activity in CSF of AD patients, already at the preclinical phase of the disease. Increased PKM activity was observed also in FTD patients, possibly underlining similar alterations in energy metabolism in AD and FTD.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Demência Frontotemporal , Humanos , Doença de Alzheimer/diagnóstico , Doença de Alzheimer/líquido cefalorraquidiano , Proteínas tau/líquido cefalorraquidiano , Demência Frontotemporal/líquido cefalorraquidiano , Proteínas do Líquido Cefalorraquidiano , Proteômica , Disfunção Cognitiva/diagnóstico , Disfunção Cognitiva/líquido cefalorraquidiano , Biomarcadores/líquido cefalorraquidiano , Peptídeos beta-Amiloides/líquido cefalorraquidiano , Fragmentos de Peptídeos/líquido cefalorraquidiano
11.
J Proteome Res ; 22(7): 2493-2508, 2023 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-37338096

RESUMO

Syndromic CLN3-Batten is a fatal, pediatric, neurodegenerative disease caused by variants in CLN3, which encodes the endolysosomal transmembrane CLN3 protein. No approved treatment for CLN3 is currently available. The protracted and asynchronous disease presentation complicates the evaluation of potential therapies using clinical disease progression parameters. Biomarkers as surrogates to measure the progression and effect of potential therapeutics are needed. We performed proteomic discovery studies using cerebrospinal fluid (CSF) samples from 28 CLN3-affected and 32 age-similar non-CLN3 individuals. Proximal extension assay (PEA) of 1467 proteins and untargeted data-dependent mass spectrometry [MS; MassIVE FTP server (ftp://MSV000090147@massive.ucsd.edu)] were used to generate orthogonal lists of protein marker candidates. At an adjusted p-value of <0.1 and threshold CLN3/non-CLN3 fold-change ratio of 1.5, PEA identified 54 and MS identified 233 candidate biomarkers. Some of these (NEFL, CHIT1) have been previously linked with other neurologic conditions. Others (CLPS, FAM217B, QRICH2, KRT16, ZNF333) appear to be novel. Both methods identified 25 candidate biomarkers, including CHIT1, NELL1, and ISLR2 which had absolute fold-change ratios >2. NELL1 and ISLR2 regulate axonal development in neurons and are intriguing new candidates for further investigation in CLN3. In addition to identifying candidate proteins for CLN3 research, this study provides a comparison of two large-scale proteomic discovery methods in CSF.


Assuntos
Doenças Neurodegenerativas , Lipofuscinoses Ceroides Neuronais , Humanos , Criança , Chaperonas Moleculares/metabolismo , Proteínas do Líquido Cefalorraquidiano , Glicoproteínas de Membrana/metabolismo , Proteômica , Lipofuscinoses Ceroides Neuronais/genética , Lipofuscinoses Ceroides Neuronais/metabolismo
12.
Sci Data ; 10(1): 261, 2023 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-37160957

RESUMO

Alzheimer's disease (AD) is the most common form of dementia, with cerebrospinal fluid (CSF) ß-amyloid (Aß), total Tau, and phosphorylated Tau (pTau) providing the most sensitive and specific biomarkers for diagnosis. However, these diagnostic biomarkers do not reflect the complex changes in AD brain beyond amyloid (A) and Tau (T) pathologies. Here, we report a selected reaction monitoring mass spectrometry (SRM-MS) method with isotopically labeled standards for relative protein quantification in CSF. Biomarker positive (AT+) and negative (AT-) CSF pools were used as quality controls (QCs) to assess assay precision. We detected 62 peptides (51 proteins) with an average coefficient of variation (CV) of ~13% across 30 QCs and 133 controls (cognitively normal, AT-), 127 asymptomatic (cognitively normal, AT+) and 130 symptomatic AD (cognitively impaired, AT+). Proteins that could distinguish AT+ from AT- individuals included SMOC1, GDA, 14-3-3 proteins, and those involved in glycolysis. Proteins that could distinguish cognitive impairment were mainly neuronal proteins (VGF, NPTX2, NPTXR, and SCG2). This demonstrates the utility of SRM-MS to quantify CSF protein biomarkers across stages of AD.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/diagnóstico , Bioensaio , Biomarcadores , Proteínas do Líquido Cefalorraquidiano , Espectrometria de Massas
13.
Int J Mol Sci ; 24(7)2023 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-37047093

RESUMO

ADAM10 is the main α-secretase acting in the non-amyloidogenic processing of APP. We hypothesized that certain rare ADAM10 variants could increase the risk for AD by conferring the age-related downregulation of α-secretase. The ADAM10 gene was sequenced in 103 AD cases (82% familial) and 96 cognitively preserved nonagenarians. We examined rare variants (MAF < 0.01) and determined their potential association in the AD group with lower CSF protein levels, as analyzed by means of ELISA, and Western blot (species of 50 kDa, 55 kDa, and 80 kDa). Rare variants were found in 15.5% of AD cases (23% early-onset, 8% late-onset) and in 12.5% of nonagenarians, and some were group-specific. All were intronic variants except Q170H, found in three AD cases and one nonagenarian. The 3'UTR rs74016945 (MAF = 0.01) was found in 6% of the nonagenarians (OR 0.146, p = 0.057). Altogether, ADAM10 total levels or specific species were not significantly different when comparing AD with controls or carriers of rare variants versus non-carriers (except a Q170H carrier exhibiting low levels of all species), and did not differ according to the age at onset or APOE genotype. We conclude that ADAM10 exonic variants are uncommon in AD cases, and the presence of rare intronic variants (more frequent in early-onset cases) is not associated with decreased protein levels in CSF.


Assuntos
Doença de Alzheimer , Idoso de 80 Anos ou mais , Humanos , Proteínas ADAM/metabolismo , Proteína ADAM10/genética , Proteína ADAM10/metabolismo , Doença de Alzheimer/metabolismo , Precursor de Proteína beta-Amiloide/genética , Secretases da Proteína Precursora do Amiloide/genética , Secretases da Proteína Precursora do Amiloide/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas do Líquido Cefalorraquidiano/análise , Proteínas do Líquido Cefalorraquidiano/metabolismo
14.
Molecules ; 28(8)2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-37110850

RESUMO

Cerebrospinal fluid (CSF) proteins are very important because they can serve as biomarkers for central nervous system diseases. Although many CSF proteins have been identified with wet experiments, the identification of CSF proteins is still a challenge. In this paper, we propose a novel method to predict proteins in CSF based on protein features. A two-stage feature-selection method is employed to remove irrelevant features and redundant features. The deep neural network and bagging method are used to construct the model for the prediction of CSF proteins. The experiment results on the independent testing dataset demonstrate that our method performs better than other methods in the prediction of CSF proteins. Furthermore, our method is also applied to the identification of glioma biomarkers. A differentially expressed gene analysis is performed on the glioma data. After combining the analysis results with the prediction results of our model, the biomarkers of glioma are identified successfully.


Assuntos
Doenças do Sistema Nervoso Central , Glioma , Humanos , Biomarcadores/líquido cefalorraquidiano , Glioma/diagnóstico , Glioma/genética , Proteínas do Líquido Cefalorraquidiano
15.
Mol Cell Proteomics ; 22(4): 100523, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36870567

RESUMO

Neurologic manifestations are among the most frequently reported complications of COVID-19. However, given the paucity of tissue samples and the highly infectious nature of the etiologic agent of COVID-19, we have limited information to understand the neuropathogenesis of COVID-19. Therefore, to better understand the impact of COVID-19 on the brain, we used mass-spectrometry-based proteomics with a data-independent acquisition mode to investigate cerebrospinal fluid (CSF) proteins collected from two different nonhuman primates, Rhesus Macaque and African Green Monkeys, for the neurologic effects of the infection. These monkeys exhibited minimal to mild pulmonary pathology but moderate to severe central nervous system (CNS) pathology. Our results indicated that CSF proteome changes after infection resolution corresponded with bronchial virus abundance during early infection and revealed substantial differences between the infected nonhuman primates and their age-matched uninfected controls, suggesting these differences could reflect altered secretion of CNS factors in response to SARS-CoV-2-induced neuropathology. We also observed the infected animals exhibited highly scattered data distributions compared to their corresponding controls indicating the heterogeneity of the CSF proteome change and the host response to the viral infection. Dysregulated CSF proteins were preferentially enriched in functional pathways associated with progressive neurodegenerative disorders, hemostasis, and innate immune responses that could influence neuroinflammatory responses following COVID-19. Mapping these dysregulated proteins to the Human Brain Protein Atlas found that they tended to be enriched in brain regions that exhibit more frequent injury following COVID-19. It, therefore, appears reasonable to speculate that such CSF protein changes could serve as signatures for neurologic injury, identify important regulatory pathways in this process, and potentially reveal therapeutic targets to prevent or attenuate the development of neurologic injuries following COVID-19.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Humanos , Chlorocebus aethiops , Proteínas do Líquido Cefalorraquidiano , Proteoma , Macaca mulatta
17.
Mayo Clin Proc ; 98(2): 239-251, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36737114

RESUMO

OBJECTIVES: To present a normal range of cerebrospinal fluid (CSF) protein levels in a community-based population and to evaluate factors that contribute to CSF protein level variability. PATIENTS AND METHODS: Samples of CSF protein were obtained from participants aged 32 to 95 years who underwent lumbar puncture (LP) between November 1, 2007, and October 1, 2017, as part of the Mayo Clinic Study of Aging, a longitudinal, population-based study of residents of Olmsted County, Minnesota. RESULTS: A total of 633 participants (58.1% male; 99.1% White; mean ± SD age, 70.9±11.6 years) underwent LP with recorded CSF protein level. Mean ± SD CSF protein level was 52.2±18.4 mg/dL (to convert to mg/L, multiply by 10), with a 95% reference interval of 24.0 to 93.4 mg/dL (range, 14.0-148.0 mg/dL). Spinal stenosis and arterial hypertension were associated with higher CSF protein levels on univariable analysis (P<.001). Increasing age, male sex, and diabetes were all independently associated with higher CSF protein levels on multivariable analysis (P<.001). In the 66 participants with repeated LPs within 2.5 years, the coefficient of repeatability was 26.1 mg/dL. Eleven participants (16.7%) had a CSF protein level difference of 20 mg/dL or more between serial LPs, and 4 (6.1%) had a difference of 25 mg/dL or more. There was a trend toward greater CSF protein level variability in patients with spinal stenosis (P=.054). CONCLUSION: This large population-based study showed that CSF protein level can vary significantly among individuals. Elevated CSF protein level was independently associated with older age, male sex, and diabetes and is higher than listed in many laboratories. These findings emphasize the necessity of evidence-based reevaluation and standardization of CSF protein metrics.


Assuntos
Estenose Espinal , Humanos , Masculino , Pessoa de Meia-Idade , Idoso , Idoso de 80 Anos ou mais , Feminino , Estenose Espinal/metabolismo , Lipopolissacarídeos/metabolismo , Proteínas do Líquido Cefalorraquidiano/análise , Proteínas do Líquido Cefalorraquidiano/metabolismo , Punção Espinal , Envelhecimento , Líquido Cefalorraquidiano
18.
Br J Neurosurg ; 37(2): 127-136, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35174747

RESUMO

BACKGROUND: Vestibular schwannoma is a common pathology encountered by neurosurgeons worldwide. Often vestibular schwannoma presents with obstructive hydrocephalus. Papilledema is present in 8% of the patients with vestibular schwannoma, primarily due to obstructive hydrocephalus. Hyperproteinorrhachia is believed to be responsible for papilledema in the absence of hydrocephalus in vestibular schwannoma. However, there is a paucity of literature on the mechanism of papilledema in vestibular schwannoma patients with hydrocephalus. OBJECTIVE: The aim of this study was to conduct a scoping review of scientific literature on papilledema in vestibular schwannoma patients without hydrocephalus. METHODS: Design: This was a systematic scoping review and critical appraisal. Literature Search from PubMed was done following PRISMA-ScR (Preferred Reporting Items for Systematic Reviews and Meta-Analyses Extension for Scoping Reviews) and Joanna Briggs Institute guidelines for conducting and reporting scoping reviews. RESULTS: A total of seven studies, including eight patients, were identified for inclusion in the review. The studies were heterogeneous in terms of reporting for various variables. All the included studies were case reports, with the earliest publication in 1954 and the latest publication in 2020. The mean age of the patients in the included studies was 35 years, with a minimum age of 20 years and maximum age of 64 years. Approximately 62.5% were females, and 37.5% were males in the included study. Only three studies have studied cerebrospinal fluid (CSF) proteins levels in these patients. CONCLUSIONS: There is paucity in literature and a lack of evidence to conclusively state hyperproteinorrhachia as an antecedent to the development of papilledema in vestibular schwannoma patients without hydrocephalus. Younger age and female gender are risk factors for developing papilledema in the absence of hydrocephalus in vestibular schwannoma patients. Brainstem compression due to the large size of vestibular schwannoma can still have a patent aqueduct of Sylvius and no obstruction to CSF flow. The development of papilledema in vestibular schwannoma is a complex interplay of multiple factors that must be studied comprehensively for complete understanding.


Assuntos
Hidrocefalia , Neuroma Acústico , Papiledema , Masculino , Humanos , Feminino , Adulto , Adulto Jovem , Pessoa de Meia-Idade , Neuroma Acústico/complicações , Neuroma Acústico/patologia , Papiledema/etiologia , Hidrocefalia/complicações , Hidrocefalia/patologia , Proteínas do Líquido Cefalorraquidiano , Ventrículos Cerebrais
19.
Mult Scler ; 29(1): 52-62, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36154753

RESUMO

BACKGROUND: Pediatric-onset multiple sclerosis (POMS) represents the earliest stage of disease pathogenesis. Investigating the cerebrospinal fluid (CSF) proteome in POMS may provide novel insights into early MS processes. OBJECTIVE: To analyze CSF obtained from children at time of initial central nervous system (CNS) acquired demyelinating syndrome (ADS), to compare CSF proteome of those subsequently ascertained as having POMS versus monophasic acquired demyelinating syndrome (mADS). METHODS: Patients were selected from two prospective pediatric ADS studies. Liquid chromatography-mass spectrometry (LC-MS) was performed in a Dutch discovery cohort (POMS n = 28; mADS n = 39). Parallel reaction monitoring-mass spectrometry (PRM-MS) was performed on selected proteins more abundant in POMS in a combined Dutch and Canadian validation cohort (POMS n = 48; mADS n = 106). RESULTS: Discovery identified 5580 peptides belonging to 576 proteins; 58 proteins were differentially abundant with ⩾2 peptides between POMS and mADS, of which 28 more abundant in POMS. Fourteen had increased abundance in POMS with ⩾8 unique peptides. Five selected proteins were all confirmed within validation. Adjusted for age, 2 out of 5 proteins remained more abundant in POMS, that is, Carboxypeptidase E (CPE) and Semaphorin-7A (SEMA7A). CONCLUSION: This exploratory study identified several CSF proteins associated with POMS and not mADS, potentially reflecting neurodegeneration, compensatory neuroprotection, and humoral response in POMS. The proteins associated with POMS highly correlated with age at CSF sampling.


Assuntos
Esclerose Múltipla , Humanos , Criança , Pré-Escolar , Esclerose Múltipla/líquido cefalorraquidiano , Proteoma/metabolismo , Estudos Prospectivos , Canadá , Sistema Nervoso Central/metabolismo , Síndrome , Proteínas do Líquido Cefalorraquidiano/metabolismo
20.
Int J Mol Sci ; 23(19)2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-36232365

RESUMO

Amyotrophic lateral sclerosis (ALS) is a heterogeneous disease, both in its onset phenotype and in its rate of progression. The aim of this study was to establish whether the dysfunction of the blood-brain barrier (BBB) and blood-spinal cord barrier (BSCB) measured through cerebrospinal fluid (CSF) proteins and the albumin-quotient (QAlb) are related to the speed of disease progression. An amount of 246 patients diagnosed with ALS were included. CSF and serum samples were determined biochemically for different parameters. Survival analysis based on phenotype shows higher probability of death for bulbar phenotype compared to spinal phenotype (p-value: 0.0006). For the effect of CSF proteins, data shows an increased risk of death for spinal ALS patients as the value of CSF proteins increases. The same model replicated for CSF albumin yielded similar results. Statistical models determined that the lowest cut-off value for CSF proteins able to differentiate patients with a good prognosis and worse prognosis corresponds to CSF proteins ≥ 0.5 g/L (p-value: 0.0189). For the CSF albumin, the QAlb ≥0.65 is associated with elevated probability of death (p-value: 0.0073). High levels of QAlb are a bad prognostic indicator for the spinal phenotype, in addition to high CSF proteins levels that also act as a marker of poor prognosis.


Assuntos
Esclerose Amiotrófica Lateral , Albuminas/metabolismo , Biomarcadores/metabolismo , Barreira Hematoencefálica/metabolismo , Proteínas do Líquido Cefalorraquidiano , Humanos , Prognóstico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...